Parallel Workflow for High-Throughput (>1,000 Samples/Day) Quantitative Analysis of Human Insulin-Like Growth Factor 1 Using Mass Spectrometric Immunoassay
نویسندگان
چکیده
Insulin-like growth factor 1 (IGF1) is an important biomarker for the management of growth hormone disorders. Recently there has been rising interest in deploying mass spectrometric (MS) methods of detection for measuring IGF1. However, widespread clinical adoption of any MS-based IGF1 assay will require increased throughput and speed to justify the costs of analyses, and robust industrial platforms that are reproducible across laboratories. Presented here is an MS-based quantitative IGF1 assay with performance rating of >1,000 samples/day, and a capability of quantifying IGF1 point mutations and posttranslational modifications. The throughput of the IGF1 mass spectrometric immunoassay (MSIA) benefited from a simplified sample preparation step, IGF1 immunocapture in a tip format, and high-throughput MALDI-TOF MS analysis. The Limit of Detection and Limit of Quantification of the resulting assay were 1.5 μg/L and 5 μg/L, respectively, with intra- and inter-assay precision CVs of less than 10%, and good linearity and recovery characteristics. The IGF1 MSIA was benchmarked against commercially available IGF1 ELISA via Bland-Altman method comparison test, resulting in a slight positive bias of 16%. The IGF1 MSIA was employed in an optimized parallel workflow utilizing two pipetting robots and MALDI-TOF-MS instruments synced into one-hour phases of sample preparation, extraction and MSIA pipette tip elution, MS data collection, and data processing. Using this workflow, high-throughput IGF1 quantification of 1,054 human samples was achieved in approximately 9 hours. This rate of assaying is a significant improvement over existing MS-based IGF1 assays, and is on par with that of the enzyme-based immunoassays. Furthermore, a mutation was detected in ∼1% of the samples (SNP: rs17884626, creating an A→T substitution at position 67 of the IGF1), demonstrating the capability of IGF1 MSIA to detect point mutations and posttranslational modifications.
منابع مشابه
Correction: Parallel Workflow for High-Throughput (>1,000 Samples/Day) Quantitative Analysis of Human Insulin-Like Growth Factor 1 Using Mass Spectrometric Immunoassay
The complete Acknowledgements read: ‘‘We would also like to express gratitude and acknowledge the following ACT NOW study investigators for their assistance with sample collection: Ralph A. DeFronzo, MD. MaryAnn Banerji, MD, FACP, George A. Bray, MD, Thomas A. Buchanan, MD, Stephen C. Clement, MD, Robert R. Henry, MD, Abbas E. Kitabchi, Ph.D., MD, FACP, FACE, Sunder Mudaliar, MD, Robert E. Ratn...
متن کاملTargeted Selected Reaction Monitoring Mass Spectrometric Immunoassay for Insulin-like Growth Factor 1
Insulin-like growth factor 1 (IGF1) is an important biomarker of human growth disorders that is routinely analyzed in clinical laboratories. Mass spectrometry-based workflows offer a viable alternative to standard IGF1 immunoassays, which utilize various pre-analytical preparation strategies. In this work we developed an assay that incorporates a novel sample preparation method for dissociating...
متن کاملAssuring Consistent Performance of an Insulin-Like Growth Factor 1 MALDImmunoassay by Monitoring Measurement Quality Indicators
Analytical methods based on mass spectrometry (MS) have been successfully applied in biomarker discovery studies, while the role of MS in translating biomarker candidates to clinical diagnostics is less pronounced. MALDImmunoassays-methods that combine immunoaffinity enrichment with matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometric detection-are attractiv...
متن کاملClinical Utility of Insulin-Like Growth Factor 1 and 2; Determination by High Resolution Mass Spectrometry
Measurement of insulin-like growth factor-1 (IGF-I) has utility for the diagnosis and management of growth disorders, but inter-assay comparison of results has been complicated by a multitude of reference standards, antibodies, detection methods, and pre-analytical preparation strategies. We developed a quantitative LC-MS method for intact IGF-I, which has advantages in throughput and complexit...
متن کاملA Clustering Approach to Scientific Workflow Scheduling on the Cloud with Deadline and Cost Constraints
One of the main features of High Throughput Computing systems is the availability of high power processing resources. Cloud Computing systems can offer these features through concepts like Pay-Per-Use and Quality of Service (QoS) over the Internet. Many applications in Cloud computing are represented by workflows. Quality of Service is one of the most important challenges in the context of sche...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014